
Addition of the 40-gene expression profile (40-GEP) test improves prognostic accuracy and risk stratification for high-risk cutaneous squamous cell carcinoma (HR-cSCC) of the head and neck treated with Mohs micrographic surgery (MMS)

Sherrif F Ibrahim, MD, PhD¹, Jennifer J Siegel, PhD², Alison L Fitzgerald, PhD², Anesh Prasai, PhD², Ally-Khan Somani, MD, PhD, EMBA, FAAD, FACMS^{3,4}

¹Rochester Dermatologic Surgery, Victor, NY; ²Castle Biosciences, Inc., Friendswood, TX; ³Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN; ⁴SkinMD, LLC, Orland Park, IL

Introduction

- Mohs micrographic surgery (MMS) is the current standard-of-care for high-risk cutaneous squamous cell carcinoma (HR-cSCC), as it provides excellent cure rates. Despite meticulous margin control with MMS, 5-8% of patients treated with MMS will still develop metastasis.¹⁻³
- Multiple guidelines, including the National Comprehensive Cancer Network (**NCCN**),⁴ American Academy of Dermatology (**AAD**),⁵ and the European Association of Dermato-Oncology (**EADO**)⁶ recommend consideration of surveillance imaging as well as adjuvant radiation therapy (**ART**) for HR-cSCC with negative margins. However, available staging systems and prognostication tools are not particularly robust to guide such treatments.⁷
- The prognostic 40-gene expression profile (**40-GEP**) test stratifies patients with primary HR-cSCC and one or more clinicopathologic risk factors into three groups based on biological risk for regional and/or distant metastasis (Class 1, low risk; Class 2A, higher risk; Class 2B, highest risk). (**Figure 1**).⁸⁻¹⁰ When the 40-GEP test is incorporated with staging, it offers a more accurate and personalized stratification of metastatic risk.^{10,11} The 40-GEP also directs risk-aligned changes in clinical management, ¹² including accurate identification of patients who are most likely to benefit from ART and those who may defer ART, ^{13,14} which has been shown could significantly reduce healthcare costs for Medicare-eligible patients.¹⁵

Study Type, Setting, & Methods

Dunder an IRB-approved, multi-institutional (n=46), retrospective study, primary HR-cSCC tumors with one or more risk factors were acquired. The current analysis included only patients with head and neck (H&N) tumors treated with MMS (obtaining clear margins) and having met both Mohs Appropriate Use Criteria and clinical usage requirements for the 40-GEP test, performed in a CAP-accredited, CLIA-certified laboratory. Patients with post-operative radiation therapy (RT) were excluded. Clinicopathologic risk factors were comprehensively assessed, including a review of original biopsy reports, definitive surgical reports, and independent review by a board-certified dermatopathologist. Other high-risk features identified included ≥2cm tumor diameter, poorly defined tumor borders, immunosuppression, rapidly growing tumor, site of prior RT, chronic inflammation, high-risk subtype, ≥Clark Level IV, >2mm invasion, poorly differentiated, lymphovascular invasion (LVI), perineural invasion (PNI), invasion beyond subcutaneous fat. Metastasis-free survival (MFS) was estimated by Kaplan-Meier analysis with log-rank test and Cox regression analysis. Cox regression models were used to determine whether adding 40-GEP results to staging (NCCN,⁴AJCC8,¹6 or Brigham & Women's Hospital¹17 [BWH]) enhanced risk prediction.

References

1. Soleymani T et al. *J Am Acad Dermatol*. 2023; 88(1):109-17. 2. Rowe DE et al. *J Am Acad Dermatol*. 1992; 26(6):976-90. 3. Roenigk RK et al. *J Dermatol Surg Oncol*. 1990; 16(2):136-51. 4. NCCN Guidelines®, Squamous Cell Skin Cancer V.1.2024. 5. Alam M et al. *J Am Acad Dermatol*. 2018; 78(3):560-78. 6. Stratigos AJ et al. *Eur J Cancer*. 2020; 128:83-102. 7. Dessinioti C et al. *J Eur Acad Dermatol Venereol*. 2022; 36 Suppl 1:11-8. 8. Wysong A et al. *J Am Acad Dermatol*. 2021; 84(2):361-9. 9. Ibrahim SF et al. *Future Oncol*. 2022; 18(7):833-47. 10. Wysong A et al. *Dermatol Ther*. ePub 1 Mar 2024. 11. Zakria D et al. *J Drugs Dermatol*. 2023; 22(12). 12. Litchman GH et al. *Curr Med Res Opin*. 2020; 36(8):1295-300. 13. Arron S et al. *SKIN J Cutan Med*. 2024; 8(1):s335-s335. 14. Moody BR et al. *Dermatol Ther*. E-pub 23 Mar 2024 10.1007/s13555-024-01125-z 15. Somani AK et al. *J Clin Aesthetic Dermatol*. 2024; 17(1):41-4. 16. Amin MB et al. AJCC Staging Manual 8th Edition, 2017. 17. Jambusaria-Pahlajani A et al. *JAMA Dermatol*. 2013; 149(4):402.

Objectives

- Evaluate the 40-GEP test's ability to stratify metastatic risk for HR-cSCC on the H&N with clear margins after MMS.
- Assess the ability of the 40-GEP test to significantly improve metastatic risk prediction of NCCN, AJCC8, and BWH staging systems when included.

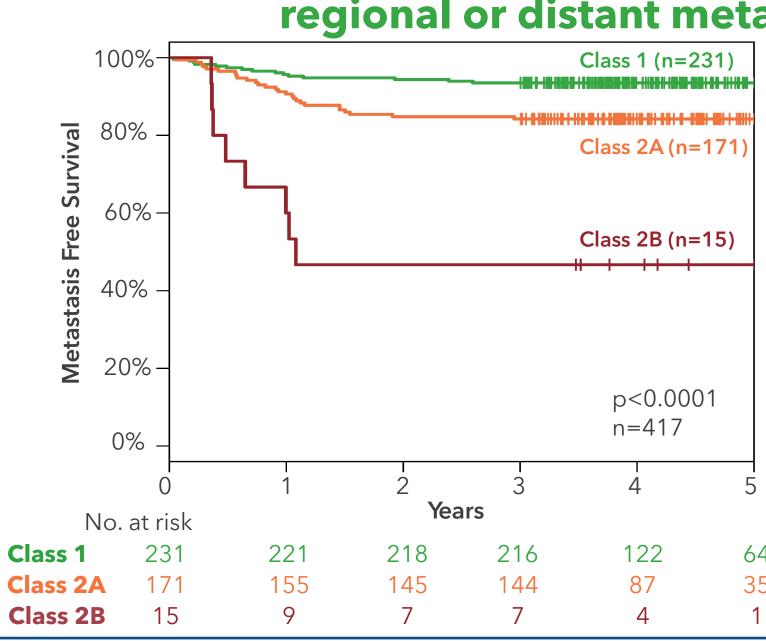

Results

Table 1. Cohort demographics: n=417 patients received definitive Mohs surgery for HR-cSCC on the H&N

Risk Factor	All patients n=417	No events n=366	Regional/distant metastasis n=51	p-value*	
Patient Characteristics					
Age, years, median (range)	72 (32-90+)	72 (34-90+)	72 (32-90+)	ns	
Male sex at birth, n (%)	346 (83.0%)	300 (82.0%)	46 (90.2%)	ns	
Immunosuppression, n (%)	112 (26.9%)	90 (24.6%)	22 (43.1%)	< 0.01	
Follow-up**, years, median (range)	4.2 (0.6-14.8)	4.3 (3.0-14.8)	3.0 (0.58-9.5)	< 0.001	
Tumor Characteristics					
Tumor diameter*** >2 cm, n (%)	117 (28.1%)	95 (26.0%)	22 (43.1%)	< 0.05	
Poorly differentiated, n (%)	63 (15.1%)	48 (13.1%)	15 (29.4%)	< 0.01	
Staging, n (%)					
BWH ¹⁷ T1	233 (55.9%)	217 (59.3%)	16 (31.4%)		
T2a	143 (34.3%)	119 (32.5%)	24 (47.1%)	< 0.001	
T2b	36 (8.6%)	26 (7.1%)	10 (19.6%)	\U.UU I	
Т3	5 (1.2%)	4 (1.1%)	1 (2.0%)		
AJCC ¹⁶ T1	270 (64.8%)	246 (67.2%)	24 (47.1%)		
T2	84 (20.1%)	72 (19.7%)	12 (23.5%)	<0.0E	
T3	59 (14.2%)	45 (12.3%)	14 (27.5%)	< 0.05	
T4	4 (1.0%)	3 (0.9%)	1 (2.0%)		
NCCN ⁴ High risk	276 (66.2%)	253 (69.1%)	23 (45.1%)	∠0 001	
Very high risk	141 (33.8%)	113 (30.9%)	28 (54.9%)	< 0.001	
40-GEP Results, n (%)					
Class 1	231 (55.4%)	215 (58.7%)	16 (31.7%)		
Class 2A	171 (41.1%)	144 (39.3%)	27 (52.9%)	< 0.001	
Class 2B	15 (3.6%)	7 (1.9%)	8 (15.7%)]	

*p-values reported for Person Chi-squared or Wilcoxon F test, as appropriate; **Only patients without a non-local event were required to have a minimum follow-up of three years; ***n=385 cases with tumor diameter available.

Figure 2. Performance of the 40-GEP to stratify patients by risk of regional or distant metastasis from cSCC

40-GEP Risk Class	3-year MFS (95% CI)	Overall Event Rate*	
Class 1	93.5% (90.4-96.7%)	6.9%	
Class 2A	84.2% (78.9-89.9%)	15.8%	
Class 2B	46.7% (27.2-80.2%)	53.3%	
Overall Cohort	88.0% (84.9-91.2%)	12.2%	

*Overall event rate includes those occurring at any time point during study follow-up, including patients who were followed longer than three years at the time of analysis.

Group	HR (95% CI)	P-value	Table 2. Multivariable
Class 1	Reference		analysis combining
Class 2A	2.28 (1.23-4.25)	0.009	the 40-GEP with
Class 2B	9.02 (3.74-21.77)	< 0.001	BWH, AJCC, or NCCN
BWH Low Risk	Reference		staging systems
BWH High Risk	2.10 (1.05-4.20)	0.034	staging systems
Class 1	Reference		Binary categorizations of
Class 2A	2.33 (1.26-4.33)	0.007	staging were employed:
Class 2B	13.67 (5.73-32.64)	< 0.002	AJCC8 T3/T4 (high risk),
AJCC Low Risk	Reference		BWH T2b/T3 (high risk),
AJCC High Risk	3.08 (1.66-5.72)	< 0.001	NCCN very high risk, and
			the 40-GEP Class 2A/2B.
Class 1	Reference		Addition of interaction
Class 2A	2.15 (1.15-4.01)	0.017	terms to the multivariate
Class 2B	8.74 (3.66-20.88)	< 0.001	analysis revealed no
NCCN High Risk	Reference		significant interactions
NCCN Very High Risk	2.06 (1.17-3.62)	0.012	(p>0.05).

Table 3. Metastatic risk prediction of NCCN, AJCC8, and BWH staging systems are significantly improved when 40-GEP is included

When the performance of staging-alone models was compared to multivariate models that included the 40-GEP, a significant improvement in predictive accuracy of metastatic events was observed. Inclusion of interaction terms revealed no significant interactions (p>0.05), verifying the 40-GEP as contributing independent prognostic value to the prediction of metastatic risk relative to staging alone.

Model*	Likelihood ratio	ANOVA (p-value)			
40-GEP	24.29				
NCCN very high	11.25	p<0.0001			
NCCN very high + 40-GEP	30.59				
AJCC8 Staging	8.42	p<0.0001			
AJCC8 Staging + 40-GEP	35.05				
BWH Staging	7.97	p<0.0001			
BWH Staging + 40-GEP	28.19				
*The models employed binary sta	ging of AJCC8 T3/T4	4 (high risk),			

*The models employed binary staging of AJCC8 T3/T4 (high risk), BWH T2b/T3 (high risk), NCCN very high risk, and 40-GEP Class 2A/B.

Conclusions

- Some patients with HR-cSCC on the H&N will experience metastasis despite MMS with clear margins; the 40-GEP can help identify patients at high risk.
- The 40-GEP significantly increases the accuracy of metastatic event prediction, alone and when combined with NCCN, AJCC8, or BWH staging systems to better guide risk-aligned care decisions for metastatic surveillance or ART.

Disclosures

> This study was supported by Castle Biosciences, Inc. SFI is an advisor, speaker, and principal investigator for Castle Biosciences, Inc. A-KS is a speaker and principal investigator for Castle Biosciences, Inc. JJS and ALF are employee shareholders of Castle Biosciences, Inc., and AP is a former employee shareholder of Castle Biosciences, Inc.